Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterizing drought stress and trait influence on maize yield under current and future conditions

Identifieur interne : 000168 ( Istex/Checkpoint ); précédent : 000167; suivant : 000169

Characterizing drought stress and trait influence on maize yield under current and future conditions

Auteurs : Matthew T. Harrison [France, Australie] ; François Tardieu [France] ; Zhanshan Dong [États-Unis] ; Carlos D. Messina [États-Unis] ; Graeme L. Hammer [Australie]

Source :

RBID : ISTEX:CEA5C2BC7998DA89EE2DF3EDF7D397B4723B3365

Abstract

Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought‐stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis‐silking synchrony, maturity and kernel number on yield in different drought‐stress scenarios, under current and future climates. Under historical conditions, a low‐stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late‐season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO2 on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis‐silking synchrony had the greatest effect on yield in low drought‐stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early‐terminal drought stress. Segregating drought‐stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought‐stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for studies examining genetic and physiological crop responses to environmental stresses.

Url:
DOI: 10.1111/gcb.12381


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:CEA5C2BC7998DA89EE2DF3EDF7D397B4723B3365

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterizing drought stress and trait influence on maize yield under current and future conditions</title>
<author>
<name sortKey="Harrison, Matthew T" sort="Harrison, Matthew T" uniqKey="Harrison M" first="Matthew T." last="Harrison">Matthew T. Harrison</name>
</author>
<author>
<name sortKey="Tardieu, Francois" sort="Tardieu, Francois" uniqKey="Tardieu F" first="François" last="Tardieu">François Tardieu</name>
</author>
<author>
<name sortKey="Dong, Zhanshan" sort="Dong, Zhanshan" uniqKey="Dong Z" first="Zhanshan" last="Dong">Zhanshan Dong</name>
</author>
<author>
<name sortKey="Messina, Carlos D" sort="Messina, Carlos D" uniqKey="Messina C" first="Carlos D." last="Messina">Carlos D. Messina</name>
</author>
<author>
<name sortKey="Hammer, Graeme L" sort="Hammer, Graeme L" uniqKey="Hammer G" first="Graeme L." last="Hammer">Graeme L. Hammer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:CEA5C2BC7998DA89EE2DF3EDF7D397B4723B3365</idno>
<date when="2014" year="2014">2014</date>
<idno type="doi">10.1111/gcb.12381</idno>
<idno type="url">https://api.istex.fr/document/CEA5C2BC7998DA89EE2DF3EDF7D397B4723B3365/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002656</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002656</idno>
<idno type="wicri:Area/Istex/Curation">002656</idno>
<idno type="wicri:Area/Istex/Checkpoint">000168</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000168</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Characterizing drought stress and trait influence on maize yield under current and future conditions</title>
<author>
<name sortKey="Harrison, Matthew T" sort="Harrison, Matthew T" uniqKey="Harrison M" first="Matthew T." last="Harrison">Matthew T. Harrison</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, INRA, UMR 759, 2 Place Viala, 34060, Montpellier</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Montpellier</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, QLD, 4072, Brisbane</wicri:regionArea>
<wicri:noRegion>Brisbane</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Current Address: Tasmanian Institute of Agriculture, P.O. Box 3523, TAS, 7320, Burnie</wicri:regionArea>
<wicri:noRegion>Burnie</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Tardieu, Francois" sort="Tardieu, Francois" uniqKey="Tardieu F" first="François" last="Tardieu">François Tardieu</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, INRA, UMR 759, 2 Place Viala, 34060, Montpellier</wicri:regionArea>
<placeName>
<settlement type="city">Montpellier</settlement>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Languedoc-Roussillon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dong, Zhanshan" sort="Dong, Zhanshan" uniqKey="Dong Z" first="Zhanshan" last="Dong">Zhanshan Dong</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Pioneer Hi‐Bred International, A DuPont Business, 7250 NW 62nd Avenue, IA, 50131, Johnston</wicri:regionArea>
<wicri:noRegion>Johnston</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Messina, Carlos D" sort="Messina, Carlos D" uniqKey="Messina C" first="Carlos D." last="Messina">Carlos D. Messina</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Pioneer Hi‐Bred International, A DuPont Business, 7250 NW 62nd Avenue, IA, 50131, Johnston</wicri:regionArea>
<wicri:noRegion>Johnston</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hammer, Graeme L" sort="Hammer, Graeme L" uniqKey="Hammer G" first="Graeme L." last="Hammer">Graeme L. Hammer</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, QLD, 4072, Brisbane</wicri:regionArea>
<wicri:noRegion>Brisbane</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Global Change Biology</title>
<title level="j" type="alt">GLOBAL CHANGE BIOLOGY</title>
<idno type="ISSN">1354-1013</idno>
<idno type="eISSN">1365-2486</idno>
<imprint>
<biblScope unit="vol">20</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="867">867</biblScope>
<biblScope unit="page" to="878">878</biblScope>
<biblScope unit="page-count">12</biblScope>
<date type="published" when="2014-03">2014-03</date>
</imprint>
<idno type="ISSN">1354-1013</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1354-1013</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought‐stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis‐silking synchrony, maturity and kernel number on yield in different drought‐stress scenarios, under current and future climates. Under historical conditions, a low‐stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late‐season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO2 on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis‐silking synchrony had the greatest effect on yield in low drought‐stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early‐terminal drought stress. Segregating drought‐stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought‐stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for studies examining genetic and physiological crop responses to environmental stresses.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
<li>États-Unis</li>
</country>
<region>
<li>Languedoc-Roussillon</li>
<li>Occitanie (région administrative)</li>
</region>
<settlement>
<li>Montpellier</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Occitanie (région administrative)">
<name sortKey="Harrison, Matthew T" sort="Harrison, Matthew T" uniqKey="Harrison M" first="Matthew T." last="Harrison">Matthew T. Harrison</name>
</region>
<name sortKey="Tardieu, Francois" sort="Tardieu, Francois" uniqKey="Tardieu F" first="François" last="Tardieu">François Tardieu</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Harrison, Matthew T" sort="Harrison, Matthew T" uniqKey="Harrison M" first="Matthew T." last="Harrison">Matthew T. Harrison</name>
</noRegion>
<name sortKey="Hammer, Graeme L" sort="Hammer, Graeme L" uniqKey="Hammer G" first="Graeme L." last="Hammer">Graeme L. Hammer</name>
<name sortKey="Harrison, Matthew T" sort="Harrison, Matthew T" uniqKey="Harrison M" first="Matthew T." last="Harrison">Matthew T. Harrison</name>
<name sortKey="Harrison, Matthew T" sort="Harrison, Matthew T" uniqKey="Harrison M" first="Matthew T." last="Harrison">Matthew T. Harrison</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Dong, Zhanshan" sort="Dong, Zhanshan" uniqKey="Dong Z" first="Zhanshan" last="Dong">Zhanshan Dong</name>
</noRegion>
<name sortKey="Messina, Carlos D" sort="Messina, Carlos D" uniqKey="Messina C" first="Carlos D." last="Messina">Carlos D. Messina</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000168 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/biblio.hfd -nk 000168 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Checkpoint
   |type=    RBID
   |clé=     ISTEX:CEA5C2BC7998DA89EE2DF3EDF7D397B4723B3365
   |texte=   Characterizing drought stress and trait influence on maize yield under current and future conditions
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024